Welcome, AMD Embedded Microblaze V

Congratulations to AMD Embedded on its debut of Microblaze V.

With RISC-V support now from AMD, Intel, Lattice, MicroSemi, and others, FPGA vendors’ transition to RISC-V is (almost) complete. Still a few stragglers.

Related, here for your possible amusement is my IEEE FCCM 2019 Soft Processors Panel presentation, A Game of Soft Processors:


This panel, the same night as the doomed Game of Thrones’ Battle of Winterfell, anticipated a similar wipe out: all FPGA vendors’ proprietary soft processors would eventually fall to the RISC-V juggernaut. This has come to pass. This is good.

The past two decades have been an era of siloed, proprietary, fragmented, duplicative soft processor ecosystems. Use MicroBlaze (or Nios) IP and you were locked in to Xilinx (or Altera) devices.

Now, looking ahead, FPGA vendors should still compete vigorously on best, fastest, smallest processor cores and IP, and most productive development environments, but also, shocker!, they should work together to advance RISC-V standards and profiles for FPGA embedded systems SoCs, so that customer designs are more reusable and portable across platforms. This will be great for customers and great for the vendors, because overall there will be more IP and more solutions ready to run on their latest devices.

RISC-V-standards-based reuse and interop is a major theme and objective of the RISC-V International Soft Processor SIG. Please join us and let’s build a community to advance these standards.

Also, a RISC-V FPGA vendor and user community, together, might speak with a common voice, better to be heard by a RISC-V consortium focused on ASIC design considerations. As RISC-V International undertakes new task groups to shape new standards that address new applications and market segments, the FPGA implementers’ perspective will help ensure that these new standards remain relatively feasible and hopefully economical to implement in FPGAs’ LUTs and BRAMs and DSPs. This is another objective of the SIG:

Background and Motivation

4. FPGA RISC-V systems bring new opportunities and challenges, such as late customizability / fine-grained subsetting, novel memory systems and interconnects, accelerator integration, partial reconfiguration, and alternative arithmetic systems, that may not be a priority or relevant to ASIC implementations.

5. Proposed RISC-V ISA extensions may inadvertently induce circuit structures that are prohibitively expensive in certain FPGA devices or use cases. …

Goals and Scope

2. Represent FPGA implementation considerations within RISC-V TGs, acting as a resource for consultations and to monitor progress of RISC-V standards from the perspective of Soft CPUs.