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Hoplite: A Deflection-Routed Directional Torus NoC for FPGAs

NACHIKET KAPRE, University of Waterloo
JAN GRAY, Gray Research LLC

We can design an FPGA-optimized lightweight network-on-chip (NoC) router for flit-oriented packet-
switched communication that is an order of magnitude smaller (in terms of LUTs and FFs) than state-of-
the-art FPGA overlay routers available today. We present Hoplite, an efficient, lightweight, and fast FPGA
overlay NoC that is designed to be small and compact by (1) using deflection routing instead of buffered
switching to eliminate expensive FIFO buffers, and (2) using a torus topology to reduce the cost of switch
crossbar. Buffering and crossbar implementation complexities have traditionally limited speeds and imposed
heavy resource costs in conventional FPGA overlay NoCs. We take care to exploit the fracturable LUT
organization of the FPGA to further improve the resource efficiency of mapping the expensive crossbar
multiplexers. Hoplite can outperform classic, bidirectional, buffered mesh networks for single-flit-oriented
FPGA applications by as much as 1.5× (best achievable throughputs for a 10×10 system) or 2.5× (allocating
same amount of FPGA resources to both NoCs) for uniform random traffic. When compared to buffered mesh
switches, FPGA-based deflection routers are ≈3.5× smaller (HLS-generated switch) and 2.5× faster (clock
period) for 32b payloads. In a separate experiment, we hand-crafted an RTL version of our switch with
location constraints that requires only 60 LUTs and 100 FFs per router and runs at 2.9 ns. We conduct
additional layout experiments on modern Xilinx and Altera FPGAs and demonstrate wide-channel chip-
spanning layouts that run in excess of 300 MHz while consuming 10–15% of overall chip resources. We
also demonstrate a clustered RISC-V multiprocessor organization that uses Hoplite to help deliver the high
processing throughputs of the FPGA architecture to user applications.
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1. INTRODUCTION
It is an important and popular fact that the design and engineering of NoCs (network-
on-chip) in modern SoCs (system-on-chip) and multiprocessing fabrics is critical for
performance and energy efficiency. With the rising demand for accelerator building
blocks and the variety of IP cores available, the use of an NoC-based communication
fabric for assembling large designs quickly has never been more important.

The programmable FPGA fabric makes it possible to support overlay NoCs that are
configured on top of configurable LUT and routing resources. They are adaptable,
customizable and tuneable, but have generally suffered from high resource require-
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ments when mapped to FPGAs. For example, the 32b CMU CONNECT router [Pa-
pamichael and Hoe 2012] takes up 1.5K LUTs@9.6 ns while the 32b Penn Split-Merge
router [Huan and DeHon 2012] occupies 1.7K LUTs@4.5 ns. While system-level inter-
connection tools like Altera Qsys [Altera 2011], provide a way to integrate IP cores
in arbitrary topologies, the switching blocks are still too expensive (1.6K ALMs per
router for a fully-connected 16-node design) and unsuitable for massively-parallel com-
position of computing cores. For context, a lightweight RISC-V processor mapped to
an FPGA [Gray 2016] consumes 320 LUTs. This 4–5× imbalance in resource utiliza-
tion of the processing and communication components has typically limited the per-
formance of FPGA-based parallel overlays. The key culprit in this scenario is the in-
ability to cheaply implement small FPGA onchip buffers and wide multi-bit crossbars
while retaining high performance. In the full-custom or ASIC domain, NoC designs
do not suffer the same drawbacks as custom SRAM buffers and crossbar arrays can
be provisioned directly on silicon without any intermediate configuration layer. Un-
like traditional ASIC NoCs, support for VCs (virtual channels) and other exotic NoC
infrastructure is too expensive to overlay on top of the FPGA. Under these circum-
stances, the performance limits and exorbitant costs of FPGA overlay NoCs can be-
come a stumbling block in the wider adoption and integration of NoCs beyond small
system sizes. Some recent academic studies have investigated the potential for hard
NoCs [Abdelfattah and Betz 2012] that are essentially ASIC-style NoCs embedded
within the FPGA fabric. However, it will take years before we see them in a shipped
product if the business case is made in its favor. Furthermore, depending on the wiring
budget allocated to the hard NoC, they may still be unable to perfectly satisfy the com-
munication requirements of spatial applications. Given the reality of these constraints,
high-performance low-cost NoCs can help fill a crucial gap in the landscape of FPGA-
based overlays today by offering a competitive solution for building massively-parallel
processing fabrics.

In this paper, we investigate the latency and throughput characteristics of construct-
ing the Hoplite [Kapre and Gray 2015] overlay NoC using bufferless deflection-routed
torus [Moscibroda et al. 2009] on top of a modern FPGA fabric. Deflection routing oper-
ates by sending incoming packets at a NoC router to available output ports even when
the desired output port is unavailable. No packet buffering is permitted in the router.
Thus, if a packet cannot route along its natural (fastest) direction of traversal, it gets
deflected to a less desirable output resulting in a longer traversal. In exchange for
this performance loss, we can build a simpler, cheaper router without buffers or com-
plex arbitration policies. While the idea of deflection routing is nothing new, we show
how to apply this to the FPGA substrate and cleverly exploit the LUT organization and
mapping capabilities to best conserve available resources. Bufferless deflection routers
such as the CMU BLESS [Cai et al. 2015] design are smaller than the CMU Connect
and Penn Split-Merge designs but still occupy 1K LUTs@13.2ns as they were not de-
signed with the FPGA organization in mind. Deflection routing, when implemented
specifically to exploit the characteristics of the FPGA substrate, greatly simplifies the
engineering of overlay networks. In particular, the use of unidirectional torus instead
of a bidirectional network enables simpler switching and control logic in the design.
This is a better match to the LUT organization of the FPGA enabling efficient imple-
mentation of the NoC multiplexers. The use of deflection routing elegantly handles
conflicts within the NoC without resorting to complex handshake-based control and
FIFO-based designs that add complexity to the router arbitration logic. This reduction
in complexity simplifies the circuit design thereby enabling faster clock frequency of
the NoC fabric. Hoplite was first devised to efficiently interconnect hundreds of soft
processors in the Phalanx system [Gray 2014], but is broadly applicable to other roles.
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Fig. 1: Area-Throughput Tradeoffs for various switches in a 10×10 NoC (Virtex-6
LX240T FPGA) under random traffic and offered injection rate of 0.5

packets/cycle/PE. Also showing results for hand-crafted RTL implementation of
Hoplite. HLS=high-level synthesis.

In Fig. 1, we preview our preliminary results for the various switches we developed
for an 10×10 NoC. Typically, we expect the area-time engineering tradeoffs to improve
performance at increased cost. However, we observe the opposite behavior in this ex-
periment. Even when evaluating the simple effect of changing topologies from a mesh
to a torus (excluding FPGA-optimized Hoplite), we observe throughput improvements
with large reductions in LUT costs. For instance, the 2D bidirectional mesh requires
≈200K LUTs and delivers a throughput of ≈2M packets/s. In contrast, the 2D unidi-
rectional torus requires ≈100K LUTs while slightly improving NoC throughput. Thus,
the mere choice of a directional 2D torus alone helps lower FPGA implementation
cost by simplifying the switching crossbar. Now, when we further optimize and select
deflection routing over buffered switching on the torus, we reduce resource utiliza-
tion to ≈50K LUTs while boosting throughput to ≈3M packets/s. This second benefit
is achieved by eliminating FIFO queuing costs and a faster clock frequency. Finally,
when we consider FPGA-optimized RTL mapping, the total cost drops to ≈6K LUTs
at slightly improved throughput. This reduction is due to the elimination of overheads
of high-level synthesis. All effects considered together, the FPGA-optimized deflection-
router based design is able to support 30% higher bandwidth for uniform random traf-
fic while also delivering a 3× reduction in FPGA resource utilization at 100 PEs (PE is
a Processing Element, like a soft processor, or a communicating IP block).

We make the following key contributions in this paper:

— FPGA-focused design and characterization of buffered mesh, buffered torus and
bufferless deflection router architectures on modern Xilinx and Altera FPGAs. Ini-
tial comparison based on Vivado High-Level Synthesis (for Xilinx FPGAs), to enable
fair comparison across various design styles, along with an optimized RTL mapping
and floorplanning toolflow for both Xilinx and Altera FPGAs.

— Performance evaluation and quantification of the NoC under various statistical traf-
fic patterns. Analysis of engineering tradeoffs in fairness and latency distribution
when using deflection routing for various workloads.
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— Demonstration of the efficiency and effectiveness of Hoplite NoCs in constructing
GRVI-Phalanx massively parallel processor cluster arrays.

We extend the original Hoplite [Kapre and Gray 2015] work and present new results
in the following areas:

— We provide commentary on platform-specific implementation considerations for map-
ping Hoplite routers to both Xilinx and Altera FPGAs. The clustered LUT architec-
ture of these two FPGA vendors is unique and motivates a specialized implementa-
tion for both cases.

— We show how to map a RISC-V multiprocessor accelerator using the Hoplite NoC as
an example of a real world case-study.

— We conduct extensive floorplanning experiments for large chip-spanning NoCs of dif-
ferent sizes, and different interface widths to push the FPGA fabric to the limit.

— We attempt to understand the worst-case latency trends for the base Hoplite archi-
tecture to motivate future designs.

2. BACKGROUND
2.1. Context
Modern computing fabrics including multi-core CPUs, SIMD GPUs, and heterogeneous
embedded SoCs have all adopted some form of time-shared networking resource for ex-
changing data and control. These networks are used to support cache coherency traffic
or explicit, user-controlled DMA data transfers between IP blocks. These scenarios
cover application communication requirements that are dynamic and unknown until
runtime. Unlike these computing systems, FPGAs have long supported statically con-
figured routing resources that are programmed and managed offline during compile
time. While this structure is ideal for circuit-style dataflow computations, there is still
a demand for supporting traffic generated by computing overlays (e.g. Vector, VLIW,
Dataflow) or between IP cores using an AXI-compatible bus protocol. In particular, we
are interested in supporting massively-parallel, customized soft-processor arrays pro-
grammed on top of the FPGA fabric. We consider traffic patterns [Abad et al. 2012]
where we generate a large number of packets that needs to be independently routed to
dynamically determined destination information. To support such dynamic workloads,
we need packet-switched overlay designs where each packet (or flit) is routed based on
address information that is bundled with the data (payload).

2.2. Related Work
While we still use them today, bus-based shared networks were common in the re-
source starved silicon-poor era of the late 1990s-2000s. As wiring delays overwhelmed
gate delays and the effects of Rent’s rule [Landman and Russo 1971] manifested in
system-level communication requirements, it was no longer adequate to rely purely
on busses alone. Shared, switched networks that route packets instead of wires [Dally
and Towles 2001] became increasingly important. ASIC-based NoC designs have en-
joyed the ability to introduce new performance-enhancing features such as virtual
channels, and exotic flow-control strategies as their silicon implementation costs are
fairly modest. Few FPGA-based NoC router designs such as the CMU CONNECT [Pa-
pamichael and Hoe 2012] have attempted to replicate this model on top of FPGAs and
have reported slow, and large designs. However, the cost of supporting virtual chan-
nels on FPGAs in the style of CMU CONNECT is high as each VC buffer and associ-
ated control adds to circuit complexity. While the CONNECT framework allows con-
struction of virtual-channel free designs, and FPGA-amenable wire-rich higher-radix
topologies, they ultimately still need expensive FIFO-based flow control. The Penn
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Table I: Comparing FPGA-based NoC routers
(32b payloads, Xilinx Virtex-6 LX240T, otherwise indicated).

Router LUTs FFs Cycle
(ns)

BLESS (without buffers) [Cai et al. 2015]1 1090 335 13.2
CONNECT 2VCs [Papamichael and Hoe 2012] 1562 635 9.6
Split-Merge DOR [Huan and DeHon 2012; Kapre et al. 2006] 1785 541 4.5
Altera Qsys [Altera 2011]2 1673 - 3.1
Hoplite NoC written in Vivado HLS (This paper)
Mesh 2035 1669 6.8
Torus 1046 949 4.8
Deflection Torus 576 570 3.1
Hoplite RTL (This paper)
Deflection Torus 60 100 2.9
1FPGA used for BLESS router mapping is an older Virtex-2 Pro XC2VP70-FF1704
with 4-LUT architecture. 2Derived from Table 1 of [Altera 2011] for fully-connected

16-node system. Stratix IV C2 speed grade part. Interface width not indicated.

Split-Merge [Huan and DeHon 2012; Kapre et al. 2006] architecture throws out the
ASIC-inspired design methodology in favor of a simpler, VC-free, handshake-based,
pipelining-friendly FPGA switches. However, both these designs still spend 30–40% of
their resources on crossbar switching and 20–40% on buffering requirements while op-
erating between 90–200 MHz. The Split-Merge router can be run faster up to 310 MHz
at the cost of additional pipelining per hop which directly affects worst-case latency.
For statically known workloads, we may instead use time-multiplexed NoCs [Kapre
et al. 2006] that store the pre-computed routing decisions in lookup tables at each
router output port. This has been shown to reduce resource requirements by 2× or
more while also operating faster due to simpler, cleaner multiplexing logic. However,
this design style does require a priori static knowledge of the communication workload
and an offline scheduling step that may not always be feasible. Low-cost routers [Kim
2009] and bufferless deflection routers were proposed in [Moscibroda et al. 2009] as a
way to address the rising buffer costs (area, delay, power) in ASIC-based NoCs for mul-
tiprocessing workloads with multi-flit packets. This was refuted in [Michelogiannakis
et al. 2010] where energy benefits were found to be minimal and latency and band-
width benefits of the buffered designs were superior. In [Cai et al. 2015], an FPGA
implementation of the BLESS bufferless deflection router is presented that is cheaper
than the CMU Connect and Penn Split-Merge designs. BLESS uses a 2D bidirectional
mesh topology that requires wider crossbar input sizes than a directional torus. This
is poorly matched the FPGA LUT organization resulting in an implementation that
still requires 1K LUTs running at 13.2 ns clock period. In this paper, we investigate
the potential for implementing deflection routers organized in a directional torus for
single-flit workloads. We summarize key resource utilization results for our proposed
design in Table I and contrast it against existing FPGA overlay NoC routers.

2.3. Network-on-Chip Design
While we can organize the switches in various topologies with CMU Connect and Al-
tera Qsys tools, we only consider designing regular 2D layouts for this work. In particu-
lar, we choose to evaluate overlay NoCs connected in a 2D layout using mesh and torus
topologies as shown in Fig. 2. Data is routed over the network in a packet-switched
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(a) 2D Bidirectional Mesh (b) 2D Directional Torus

Fig. 2: Topology of NoCs considered in this study – A Bidirectional Mesh and a
Directional Torus.

style. While generally, each packet can be composed of multiple flits, we consider finer-
grained load-store style traffic generated in a multiprocessing fabric. In this scenario,
each packet is a single flit and carries two fields (1) address of destination, and (2)
data payload. To avoid deadlock during routing, we can implement various routing
algorithms in the switch such as Dimension-Ordered Routing (DOR), West-Side First
(WSF). For simplicity, we support DOR routing as it is cheap and straightforward to
implement on the FPGA logic similar to the Penn and CMU routers. Furthermore, we
do not address livelock scenarios that are possible in deflection routing.

3. DEFLECTION ROUTED TORUS NOC
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Fig. 3: Switch Organizations evaluated in this study. Bidirectional Buffered Mesh
and Directional Buffered Torus needs FIFO buffers, and wires in each dimension,

while Directional torus eliminates buffers as well.

In this paper, we explore the architecture tradeoffs in the use and optimization of
FPGA NoCs with network traffic generated from statistical sources. Specifically, we
investigate the impact of bufferless routing on FPGA NoC implementation cost and on
performance in terms of latency and bandwidth.
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In Fig. 3, we show the high-level internal organization of three styles of switches
that could be used to build an NoC for a 2D Mesh of processing elements (PEs). A
classic buffered 2D Mesh switch supports DOR routing and packet traversals in all
four directions of the mesh (and the PE). The mesh switch is organized into three
principal building blocks that contribute to cost of the switch – (1) crossbar, (2) route
arbitration, and (3) buffering and multiplexing of IOs. The implementation complexity
of the crossbar is O(N2) where N is the number of IOs. For the 2D bidirectional mesh,
N=5 (five inputs and five outputs, loopback self-edge not supported thereby depopu-
lating the crossbar by 1) and is typically implemented using one Virtex-6 6:1 LUTs
(MUXes) per bit per output port. We also need to consider any associated pipelining
registers and FIFOs for performance. The route arbiter implements DOR routing al-
gorithm and handles conflicts emerging from the packets being routed. The rest of the
resource requirements are due to the input FIFOs and bypass MUXing and registers
along with output registers. These FIFOs are implemented using SRL blocks and reg-
isters with bypass paths to reduce queueing delay within the switch. This alone is
sufficiently complex to implement cheaply on the FPGA, and we eschew the idea of
Virtual Channels and complex credit-based flow control to keep hardware simple. We
tabulate these requirements for a 32b payload, 16b address switch in the Table II. We
obtain these number from compiling synthesizable C++ descriptions of the different
NoC routers in Vivado HLS (high-level synthesis). These offer a substantial speedup
over Verilog-based designs for functional verification on various workloads and enable
a fair comparison across the different design styles.

The use of a directional network such as a torus is one way to lower implementa-
tion cost specifically in the crossbar block. A unidirectional buffered torus switch only
accepts packets from two dimensions (and the PE) thereby reducing the crossbar com-
plexity as we now have N=3 (one connection for the PE, two connections for vertical
and horizontal lanes).

Buffering cost can be eliminated by adopting a deflection routing technique [Mosci-
broda et al. 2009] that misroutes packets in presence of a conflict. In buffered switches,
FIFOs are used to hold incoming packets when the desired outgoing port is not avail-
able i.e. another packet is using the port in that cycle. In contrast, in deflection-routed
networks, we intentionally misroute packets (knowing that deadlock is not possible
in bufferless networks) along available ports if the desired port is not available to
simplify circuit implementation cost. As we have identical number of incoming and
outgoing links in the switch, we can always guarantee an outgoing slot for incoming
packets. For the outgoing PE port, we misroute the packet back into the PE if the
switch is occupied thereby creating implicit backpressure. We can observe the reduc-
tions in resource costs in Table II. The 2D buffered mesh requires roughly 3.5× more
LUTs and 3× more FFs than the deflection routed torus. The buffered torus switch is

Table II: Relative Resource Utilization (LUTs and FFs) of various Switch Blocks in
Vivado HLS.

Crossbar (%) Arbiter (%) Total (%)
Mesh (LUTs) 860 42 280 14 2035 100
Torus (LUTs) 286 27 64 6 1046 100
Defl. Torus (LUTs) 215 37 130 22 576 100
Mesh (FFs) 389 23 97 6 1669 100
Torus (FFs) 223 23 31 3 949 100
Defl. Torus (FFs) 205 35 79 13 579 100

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 2, Article 3, Publication date: April 2016.



3:8

only marginally larger than the deflection routed torus requiring 1.8×more LUTs and
1.6×more FFs. When considering switch throughputs, the deflection routed torus runs
roughly 2.1× faster than the buffered mesh switch and 1.5× faster than the buffered
torus. Thus, the simpler and leaner switch design of the deflection routed torus re-
quires fewer resources and runs faster than the alternative buffered switches. The
route arbitration for the deflection torus is indeed marginally slower (by 0.1–0.2 ns)
due to the more complex routing logic for handling all deflection cases, but overall
clock frequency is still faster.

When comparing the efficiency of a buffered network to that of a bufferless net-
work, we must consider the relative impact of congestion. In a buffered network, this
manifests as waiting time in the buffers while in a deflection torus, congested packets
are misrouted. While implementation of the misrouting policy is substantially simpler
on the FPGA (see Table II), packets may now take multiple trips in the NoC due to
misrouting at conflicted switches before reaching their destination. While this may
seem unfair, as packets may re-traverse the NoC again covering longer distances, the
penalty of waiting time as well as leaner, faster deflection-routed FPGA switches will
make this an interesting architecture comparison. Thus in the final evaluation, we
will observe a composite effect of waiting time in buffered networks with the slower
NoC design competing with the faster, simpler deflection router with its associated
misrouting overheads.

4. FPGA-AWARE HOPLITE IMPLEMENTATION
With the high-level context of understanding deflection torus NoCs against other
topologies in Section 3, we now show how to map Hoplite to modern FPGA fabrics.
For this we directly use a Verilog RTL implementation instead of the Vivado HLS
switch shown earlier. Since the switching crossbar occupies a large fraction of total
switch area, it is important that we first understand how this structure maps to the
FPGA LUT organization.

4.1. Switch datapath optimization
The optimized switch datapath is the culmination of a series of architecture simplifi-
cations and FPGA-specific technology mapping optimizations (Fig. 4) that reduce the
switch area of a router with w-bit links from 10w 6-LUTs or more to just w 6-LUTs
i.e. one LUT per router per bit of link width. Each one-bit slice of a Hoplite router’s
3×2 switch and its registers is technology mapped into a single Xilinx 6-LUT or Altera
ALM, with an FF→wire→LUT→FF critical path.

— Use a directional torus. The Hoplite switch datapath is partially inspired by the
dimension sliced router [Kim 2009] but is more austere. The unidirectional torus
reduces the switch crossbar from 5×5 to 3×3 (Fig. 4a and Fig. 4b). Here, we delete
NO and EO (north out and east out) output links. The remaining outputs SO, EO, O
(relabeled Y, X, O) use simpler 3:1 muxes that are a better match for 6-LUT FPGAs.
This saves at least 2w LUTs.

— Use X→Y dimension-order routing. We can further save resources by restricting
the possible turns in the switch to DOR (dimension ordered routing). Thus, at router
(x1,y0), any YI input message has destination (x1,y1) with matching x1, and there-
fore, never routes to the X output. We can elide the YI input to the X output mux
(Fig. 4c) and simplify the X mux to a 2:1 w-bit mux.

— Share output links. In the life cycle of a message, it enters the NoC at some router
(x0,y0). It traverses some routers and X links to (x1,y0). Perhaps it deflects and tra-
verses more X links, back around to (x1,y0). Eventually it routes on Y to (x1,y1) and
exits the NoC. Along that path, it uses an X or Y output every cycle, but only uses
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Fig. 4: Hoplite switch datapath simplifications and FPGA technology mappings

an O PE output once. Since the PE output port is infrequently used i.e. inessential,
it may be elided by occasionally borrowing another output link, further simplifying
the switch to 3-inputs×2-outputs. Therefore, we can delete the O PE output mux and
use (share) the Y output instead. (A separate output O v signals that the Y output is
a valid output message to the PE.) This saves about w LUTs (Fig. 4d).

— Factor muxes. It is possible to factor the 3:1 and 2:1 muxes into two w-bit 2:1 muxes.
(Fig. 4e.) Both Altera and Xilinx fracturable 6-LUT FPGAs can implement two 2:1
muxes per LUT. This switch requires just 2 w/2 = w LUTs, but incurs two LUT delays,
and does not allow some routes (e.g. I→Y while XI→X). Better tech mappings follow.

— Eliminate I register. The switch (Fig. 4d)’s PE input I register is inessential and
can be elided – a PE can include one of its own if necessary (Fig. 4f).
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At this point the switch uses two w-bit registers and two w-bit muxes. But if this
design is presented to FPGA implementation tools, it may still use up to twice as many
resources as necessary. To understand why requires a brief review of Xilinx [Xilinx Inc.
2015] and Altera [Altera Corp. 2015] logic cell architecture. Modern FPGAs provide
programmable logic cells with 6-input lookup tables (6-LUTs) followed by two to four
D flip flops. Different FPGA families have different logic cell interconnect constraints.

4.2. Xilinx-specific optimizations

(a) 7-series 6-LUT with dependent D-FFs (b) UltraScale LUT, two D-FFs

Fig. 5: Xilinx LUT/FF technology mapping considerations. Schematics derived
from [Xilinx Inc. 2016; 2015]

Xilinx 6-LUTs can be subdivided into two 5-LUTs that compute two functions of the
same five inputs. In the Virtex-6/7 these outputs O6 and O5 may be optionally regis-
tered in two FFs (Fig. 5a). The only way to pack two 5-LUTs and two D-FFs per logic
cell is to register the LUT outputs of the same logic cell. In contrast, in the UltraScale
family, the two flip flops may be used independently of the 5,5-LUT (Fig. 5b). It is still
best to route the FF inputs from the adjacent 5,5-LUT using dedicated intra-logic cell
routing as it is faster, conserves inter-logic cell and inter-logic-cell-cluster interconnect,
and (presumably) saves energy. Therefore, continuing with the switch elaboration:

— Register the LUT outputs. Replace input registers XI, YI with output registers X,
Y. These D-FFs map into the same logic cells as their input mux LUTs. (Fig 4g.)

— Xilinx 5,5-LUT technology mapping. Each Xilinx 6-LUT in 5,5-LUT mode can
compute a pair of output functions Y nexti and X nexti, both a function of five com-
mon inputs YIi, XIi, Ii, and SEL1:0. (Fig. 4h.) Table III details nine possible transfer
functions; each cycle SEL1:0 can select one of a fixed subset of four. But which four
of nine? Three functions with YI→X (3, 6, and 9) are unnecessary under dimension-
order routing. Of the remaining six, the base (default) Hoplite router switch for Xilinx
implements 1, 5, 7, and 8. Rationale: transfer functions 7 and 8 are used most often,
routing X and Y ring traffic past each other and for X ring message ingress. Function
5 enables XI→Y routing as well as message fan-out for multicast delivery. Function
1 provides I→Y routing and enables a remarkable simplification of the router switch
arbiter, described next. (Functions 2 and 4 are beneficial in some scenarios but we
can only pick four.) Overall this technology mapping achieves an area of one Xilinx
6-LUT per router per bit of link width.

— Use an empty (zero LUTs) router switch arbiter. The default (“Base”) Hoplite
router for Xilinx implements basic dimension order routing, routing on X before Y,
and with a static input prioritization, enabling simple switch arbitration logic:
— X next← XI if XI valid, else I.
— Y next← YI if YI valid, else X next.
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Given the transfer functions and SEL encodings in Table III, SEL is just the concate-
nation of {YI.v, XI.v} i.e. Y.v of the prior router on the Y ring and X.v of the prior
router on the X ring. In other words, zero LUTs – and zero LUT delays – are required
to determine the switch’s output multiplexer selects from its input message links. It
should be noted, however, that we still need some decoding logic to generate valid
signals for each outgoing ports, i.e. X.v, Y.v and O v. But it is still valid to claim that
the arbitration itself consumes zero LUTs.

Table III: Xilinx 3-input, 2-output switch: SEL1:0 selects one of four implemented
transfer functions. The five transfer functions marked – are not implemented.

SEL1:0 Y X Purpose
1 00 I→Y I→X Y ring ingress, simpler SEL
2 – I→Y XI→X (XI→X plus Y ring ingress)
3 – I→Y YI→X (Not dimension-order routing)
4 – XI→Y I→X (Ingress and egress)
5 01 XI→Y XI→X Fanout for multicast
6 – XI→Y YI→X (Not dimension-order routing)
7 10 YI→Y I→X YI→Y plus X ring ingress
8 11 YI→Y XI→X Route X and Y ring messages past each other
9 – YI→Y YI→X (Not dimension-order routing)

An example illustrates router switch and NoC operation. Assume a 3×3 Hoplite NoC
that is idle (empty). A message is sent from PE at (0,0) to the adjacent PE at (1,0). At
time 0, the NoC is idle. Each of the nine routers’ switches have negated valid outputs
X.v and Y.v. The PE at (0,0) asserts its message on I and asserts I.v (message valid). At
router (0,0), the SEL1:0 input i.e. router (0,2)’s Y.v, concatenated with router (2,0)’s X.v,
is 00. SEL=00 selects transfer function 1, so the message on router (0,0)’s PE input I
transfers to its X and Y output registers. DOR logic compares the router’s coordinates
(0,0) with the message destination (1,0) and asserts X.v and negates Y.v, propagating
the valid message to router (1,0). At time 1, at router (1,0), the message is received on
XI, with XI.v asserted, and YI.v (i.e. router (1,2) Y.v) negated. SEL=01 selects transfer
function 5, transferring XI to its output registers X and Y. Router (1,0)’s coordinates
match the message destination, so DOR logic negates X.v and Y.v, and asserts O v, so
that the PE at (1,0) receives the message on its router’s Y output.

4.3. Altera-specific optimizations
The Altera ALM (Adaptive Logic Module) provides 8 inputs into its 6-LUT, which can
also implement a 5-LUT plus 3-LUT (Fig. 6a); two 5-LUTs which share two inputs (a
dual 3:1 mux) (Fig. 6b); or two 6-LUT functions which share four inputs (a 4×2 partial
crossbar) (Fig. 6c). This fracturing is different from the Xilinx LUT organization and
hence merits a new strategy for embedding the Hoplite switch crossbar.

— Altera fracturable ALM technology mapping. The 3:1 Y mux requires a 5-LUT.
The 2:1 X mux requires a 3-LUT. Both will pack into a single Altera ALM. (Fig. 6a.)
The two LUT outputs can be routed to their D-FFs using intra-ALM interconnect.
(Fig. 4i.) This achieves an area of one ALM per router per bit of link width. And since
an ALM can implement dual 3:1 muxes (Fig 6b), Altera implementations can also
efficiently implement routing algorithms beyond dimension order routing i.e. with
both XI→Y and YI→X turns.
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Fig. 6: Altera LUT/FF technology mapping considerations

— Use Altera DFFEAS D-FF load muxes(?) In principle, it is possible to implement
a remarkable two bits of switch (4 outputs) per ALM, using DFFEAS mode flip-flops.
Each of an ALM’s four D-FFs has a free load mux: ‘d = sload ? sdata : datain;’. It is
possible to map two bits of ‘X next = X SEL ? XI : I;’ to an ALM’s ALUTs and two bits
of ‘Y next = Y SEL ? YI : X next;’ to its D-FF load muxes. However, in practice, at-
tempts to scale out this mapping trick to a large switch fail. When using the Quartus
Prime Standard 2015.1 Fitter, targeting Stratix V and Arria 10, our mapping exper-
iments only manage to pack 12-13 bits (24-26 outputs) of switch per 10-ALM LAB
instead of the desired 20 bits/LAB. This may be due to limited/sparse interconnect
resources entering the LAB or Fitter limitations.

4.4. Switch optimality
The lower bound on area of a non-time-multiplexed 2D torus router datapath, with
unidirectional w-bit links, is the minimum logic necessary to drive the 2w nets of the
w-bit X- and Y-dimension output links. Both X- and Y-dimension outputs require some
combinational function of input nets. A modern 6-LUT/ALM FPGA can implement
up to two logic function outputs per LUT (Altera DFFEAS mode notwithstanding.)
Therefore the lower bound on 6-LUTs per w-bit router switch area is 2w/2 = w LUTs.
Similarly the lower bound on LUT delays through a 2D router switch which selects
message outputs from message inputs is one LUT delay. The present Hoplite router
switch design achieves these lower bounds.

4.5. Floorplanning
Floorplanning is a geometry problem that requires assigning different rectangular por-
tions of the physical chip to different logical portions of the design. A NoC is used to
interconnect many PEs situated across the die of a system on a chip (SoC). The SoC
floorplan may be determined automatically by the FPGA implementation tools, or it
may be induced by the explicit placement of the PEs and (or) NoC routers, by means
of a constraint file generated by a floorplanning constraints script. The script param-
eters include target FPGA tool, die region, link width, torus dimensions, whether to
fold (interleave) the physical arrangement of routers to bound worst-case physical link
lengths, the numbers of link pipeline registers to insert to mitigate long wire delays,
and whether or not to pack router switch LUTs in a tight block. Depending upon im-
plementation tool, the script generates UCF (user constraints file), XDC (Xilinx design
constraints), or QSF (Quartus settings file) constraints.

RLOCs (Relative Location) : Using Xilinx ISE (e.g. 6 and 7 Series), the router
RTL may be configured to generate an RPM (relationally placed macro). An RPM
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is a translation-invariant layout that precisely specifies the placement of logic com-
ponents within a block. These constraints can be relocated to any portion of the
FPGA chip by simply specifying an offset thereby yielding translation invariance.
Routers use LUT6 2 (6-input LUT) and FDCE (Register) instances placed by RLOC
and RLOC ORIGIN constraints (relative locations) into tight rectangular regions.

PBLOCKs (Placement Block): Translation invariance is increasingly harder to
guarantee on modern FPGAs due to the irregular nature of embedded hard blocks
in FPGA silicon. Thus, using newer Xilinx ISE or Vivado tools, router LUTs may also
be constrained to a rectangular region called a PBLOCK. A PBLOCK constraint is not
translation invariant and is locked to a specific position on the chip. For our router, we
constrain the logic to such a rectangular region and let the CAD tools manage low-level
placement decisions within the region.

LogicLock: Similarly, using Altera Quartus Prime, router ALMs may be con-
strained to rectangular LogicLock regions, one per router, as tight rectangles of LABs.

4.6. Example of NoC resource usage and performance
Given the shallow (1 LUT) combinational logic tree per router stage, in large sys-
tems the dominant (>80%) contributor to the NoC clock period critical path is the long
wire delay from one router site to another. Accordingly, the floorplanning tool is also
needed to evaluate representative FPGA resource use and best case clock periods for
die-spanning NoCs. A test SoC design is configured with a Hoplite NoC of various di-
mensions and link widths and floorplan layouts. Each Hoplite router PE test core is
just a minimal area circuit that swizzles the bits of an output message and offers it
back as the next input message to its router.

Table IV is a parameter sweep of this test SoC, implemented in a Xilinx Kintex
UltraScale KU040-2 FPGA by Vivado 2015.4. In each case an NX=4 column × NY=6
row Hoplite NoC is implemented with varying data payload link widths (64b to 1024b),
flat or folded torus topologies, and with/without pipelining of long wires. For example,
a folded 6×4 64b-wide NoC has a clock period of 3 ns, uses <2000 LUTs i.e. <1% of the
device LUTs and achieves a link bandwidth of 21 Gbps, a NoC bisection bandwidth
of 171 Gbps, and an average no-load latency from the source router to the destination
router of 17 ns. At the other extreme, a 1024-bit-wide non-folded torus NoC runs at 2.6
ns (385 MHz), has a link bandwidth of almost 400 Gbps, 3 Tbps of bisection bandwidth,
using about 10% of the LUTs of this mid-sized FPGA.

The ‘fold’ entries in Table IV physically interleave routers so that the length of any
inter-router link is at most twice the inter-router distance. The ’xyy’ entries are flat
tori, not folded. These routers are laid out in increasing coordinate order. All links
from (x,y) to (x+1,y) or (x,y+1) are relatively short, however links from (NX-1,y) to (0,y)
or from (x,NY-1) to (x,0) cross the width or height of the die. Since these long nets
have wire delays of 5 ns or more, the NoC and the floorplan script are configured with
pipeline registers. The notation ’xyy’ indicates there is one pipeline register in the X
ring links from (NX-1,y) to (0,y) and two pipeline registers in the Y ring links from
(x,NY-1) to (x,0). Therefore the diameter of such ’xyy’ NoC’s X rings is NX+1=5 and
that of Y rings is NY+2=8. The average no-load latency column data incorporate the
additional cycles of latency introduced by these registers.

Fig. 7 shows die plots for three of the ten test NoCs, with 64b, 256b, and 1024b link
widths. Particularly in the 1024b-wide router designs the additional x and y,y link
pipeline register flip-flops are apparent. In such ultra-wide NoC links, there is routing
congestion in the routers and in the rows and columns of logic they span. In practice
such routers are probably best floorplanned using sparse ‘router locale’ regions.

The Hoplite NoC architecture seems well matched to FPGAs with interconnect fab-
ric flip-flops such as the forthcoming Altera Stratix 10’s HyperFlex registers [Hutton
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Table IV: Example area and performance of various widths and layouts of 6×4
Hoplite NoCs in a Xilinx KU040-2. Bold entries are shown in Fig 7. Latency is

average no-load latency from source to destination routers (all-pairs).

Width Flat/ Period LUTs FFs %LUTs Link BW Bis.BW Latency
(bits) Fold (ns) (K) (K) (Gbps) (Gbps) (ns)

64 fold 3.0 1.9 3.5 0.8 21 171 17
64 xyy 2.3 1.9 4.4 0.8 28 223 16

128 fold 3.0 3.4 6.5 1.4 43 341 17
128 xyy 2.4 3.4 8.4 1.4 53 427 17
256 fold 3.1 6.5 12.7 2.7 83 661 17
256 xyy 2.5 6.5 16.3 2.7 102 819 18
512 fold 3.1 12.6 25.0 5.3 165 1321 17
512 xyy 2.5 12.6 32.2 5.3 205 1638 18

1024 fold 3.3 24.9 49.5 10.4 310 2482 18
1024 xyy 2.6 24.9 64.0 10.4 394 3151 18

(a) 64-bit links (b) 256-bit links (c) 1024-bit links

Fig. 7: Example 6×4 Hoplite NoCs with 64b, 256b, 1024b links, not folded, with one
X and two Y sets of wraparound link pipeline registers, Xilinx KU040-2 target

2015]. The NoC’s bufferless feed-forward design, simple flow control, and absence of
resets and clock enables on link output and pipeline registers enable a straightfor-
ward technology mapping to interconnect flip-flops. By introducing one or two pipeline
registers between each router, a Hoplite NoC might run at full device fMAX of 1 GHz
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or more. This should double link bandwidth and bisection bandwidth per ALM, with
little impact (for better or worse) on average message delivery latency.

4.7. A Hoplite NoC in practice: GRVI Phalanx
A wide Hoplite NoC lies at the heart of the work-in-progress GRVI Phalanx FPGA
accelerator framework. GRVI [Gray 2016] (Gray Research RISC-V RV32I) is a RISC-
V [Asanović and Patterson 2014] soft processor. Phalanx is a parallel processor and
accelerator array framework. In a Phalanx design, groups of processors and acceler-
ators form shared memory clusters, and clusters are connected with each other and
with I/O and memory devices by a Hoplite NoC with 300-bit links.

GRVI is an FPGA-efficient implementation of the RISC-V RV32I instruction set. It
has an austere 2- or 3-stage pipelined 32-bit RISC microarchitecture, with register file,
operand muxes, ALU, result mux, load/store, and program counter logic. It uses about
320 6-LUTs and runs at 300-375 MHz in Kintex UltraScale -2 FPGAs.
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Fig. 8: GRVI cluster tile: one 300b Hoplite router, 8 GRVI PEs, RAMs, accelerator(s)

A typical GRVI cluster (Fig 8) has eight GRVI PEs that share 12 BRAMs. Four
BRAMs are used as small 4 KB kernel program instruction memories (IRAMs). Each
pair of processors share one IRAM. Eight BRAMs form a 32 KB cluster shared memory
(CRAM) with twelve 32-bit wide ports. Four ports provide a 4-way banked address-
interleaved memory for PEs. Each cycle, up to four accesses may be made on the four
ports via an 8↔4 memory port interconnect. The remaining eight CRAM ports provide
an 8-way banked interleaved memory for accelerator(s), and also form a single 256-bit
wide port to send or receive 32 byte messages, per cycle, to any NoC destination, via
the cluster’s Hoplite router.

To send a message, one or more PEs prepare a 32 byte message in CRAM, then one
PE stores the global address of the message destination to the memory mapped NoC
interface ‘NOC ITF’. This unit loads, and sends, a 32 byte message to the specified
NoC PE via its Hoplite router. If the destination is another GRVI cluster, the arriving
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message is immediately written into that cluster’s CRAM and/or its accelerator(s).
(Accelerators may also use the router to send/receive messages.) NoC message send
also enables fast local memcpy and memset. Aligned data may be copied at 32 bytes
per two cycles, by sending a series of 32 byte messages from a cluster, via its router,
to itself. Eventually NoC messaging will be used to store/load a 32 byte line to DRAM,
to send/receive an Ethernet packet (as a series of messages) to/from an Ethernet NIC,
and to send/receive data to/from AXI4 (Advanced Extensible Interface) endpoints.

Fig 9a is a floorplanned 400 GRVI Phalanx implemented in a Kintex UltraScale
KU040. It has ten rows by five columns of clusters (i.e. on a 10×5 Hoplite NoC); each
cluster with eight PEs sharing 32 KB of CRAM. It uses 74% of the device’s LUTs (about
178,000 LUTs) and 100% of its BRAMs (600 BRAMs). The folded sparse 300-bit-wide
Hoplite NoC (Fig 9b) uses 6% of the device’s LUTs (just 40 LUTs per PE). In aggregate,
the 400 PEs have a peak throughput of about 100,000 MIPS. Total bandwidth into the
CRAMs is 600 GB/s.

(a) 400 Processor GRVI Phalanx (b) LUTs used by the folded torus NoC

Fig. 9: GRVI Phalanx: a 10×5 array of 300b-wide Hoplite routers and 8 PE clusters
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This design runs at 250 MHz. To minimize resource use, there are no elastic buffers
or FIFOs in the design or its NoC interfaces. Instead NoC ingress flow control of mes-
sage sends is manifest as wait states (pipeline holds) in the PE(s) attempting to send
messages. Back pressure from a router, through its local arbitration network, to each
PE’s pipeline clock enable, is a critical path in the design, and currently it caps the clock
period at about 300 MHz (smaller less congested designs) and 250 MHz (die spanning
SOCs). At 250 MHz the NoC has a bisection bandwidth of 700 Gb/s. Depending upon
workload, power is 12-17 W (30-43 mW/processor), measured with SYSMON (Xilinx
System Monitor core).

Listing 1 is a Verilog RTL snippet to build a GRVI Phalanx, i.e. to instantiate the
NoC and NX×NY array of clusters and interconnect clusters to their router ports.
(It employs `XY etc. macros to mitigate Verilog’s lack of 2D array ports.) A suitable
floorplan generator (not shown) produces a constraints file that floorplans the clusters
and NoC routers into a die-spanning 10×5 array of tiles.

wire`XY i_rdy; // client input accepted this cycle
wire`XY o_v; // client output valid this cycle
wire`MsgXY i; // client input channels
wire`MsgXY o; // client output channels

NOC #(. MCAST(MCAST), .NX(NX), .NY(NY), .D_W(D_W), .X_W(X_W), .Y_W(Y_W), ...)
noc(.clk , .rst_in , .ce, .i_rdy , .i, .o_v , .o);

genvar x, y;
generate

for (y = 0; y < NY; y = y + 1) begin : ys
for (x = 0; x < NX; x = x + 1) begin : xs

Clu #(. MCAST(MCAST), .NX(NX), .NY(NY), .X(x), .Y(y),
.D_W(D_W), .X_W(X_W), .Y_W(Y_W), ...)

c(.clk , ...,
.no_v(o_v[`xy(x,y)]), .no(o[`mxy(x,y)]),
.ni_rdy(i_rdy[`xy(x,y)]), .ni(i[`mxy(x,y)]));

end
end

endgenerate

Listing 1: Verilog RTL to generate a GRVI Phalanx and its NoC

5. RESULTS
We stress-test our NoC topologies and switches under various statistical traffic pat-
terns and evaluate throughput, average/worst-case latency scenarios and the impact
of FPGA implementation area on performance. Statistically generated workloads are
commonly used within the NoC community [Abad et al. 2012]. We develop processors
that generate traffic under the following models: (1) uniform random, (2) uniform ran-
dom but locality-aware traffic (within an rlimit), (3) bit-reverse, (4) tornado, and (5)
transpose. These workloads stress the network under both bandwidth and worst/aver-
age latency scenarios. We model injection rate as the rate of at which packets are avail-
able to enter the network (measured as packets per cycle per PE). We generate NoC
performance statistics by running our statistical workloads for 32K cycles and consider
offered rates (or offered throughput) between 0.025 (2.5% of time spent attempting
sending packets) and 1.0 (100%). We measure sustained rates (or sustained through-
put) which are the rates actually possible due to blocking and congestion within the
NoC. Consequently, these will be less than the offered rates. We also measure average
latency along with worst-case latency of the workloads by tracking the latency of each
packet while including source queueing delay in our measurement (i.e. time spent at
the source PE between attempts to enter NoC and actual entry).
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We do not have optimized RTL implementations of the buffered NoCs. Hence, we
use the placement-and-routed FPGA resource results from our HLS-based switches
for all NoCs to enable a fair apples-to-apples comparison. We generate RTL for our
various switch configurations using synthesizable C++ descriptions of the switch with
Vivado High-Level Synthesis. For Hoplite, we use a C++ description of Hoplite shown
in Figure 4c. We also evaluated other configurations from Figure 4 and observed only
1–2% loss in performance, so the performance results presented here are representa-
tive (only implementation costs will vary across Figure 4). We modularize the switch
unit into (1) crossbar, (2) router arbiter, and (3) input buffering components when gen-
erating the switch units. We synthesize the designs using Vivado HLS (C to RTL) and
Vivado 2013.4 (RTL to bitstream). We run cycle-accurate simulations of the NoC in
C++ and develop cycle-accurate models of the traffic generators in the PEs.

5.1. Throughput Tests
Under randomly generated communication workloads (uniform random), the NoC is
able to sustain throughput only up to a certain input offered rate (≈0.15) as shown in
Fig. 10a. Note that the metrics are independent of implementation costs i.e. measure-
ment in terms of cycle counts and number of processors. This saturation behavior is
expected due to congestion effects in the NoC at high traffic loads. The deflection torus
saturates at a peak sustained rate of around 0.1, the buffered torus at 0.12, and the
buffered mesh at around 0.15 for a 10×10 system. This gap is the result of the switch-
ing elements in the deflection torus and the buffered torus having half the bandwidth
of a mesh switch. This limited freedom constraints the paths that packets can take
resulting in performance saturation at lower sustained rates. Furthermore, buffering
allows the torus to sustain marginally superior bandwidth compared to the deflection
torus due the cost of deflections.
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Fig. 10: Sustained Rates and Average Latency Trends for 10×10 PEs, each point is
an offered injection rate for uniform RANDOM traffic.

In Fig. 10b, we measure the average latency of each packet traversal on our NoCs
as a function of sustained throughput at various PE counts. The deflection torus has
generally higher average routing times per packet (2× longer delay over mesh) are
again in agreement with the bandwidth results in Fig. 10a. Additionally, we observe
a premature degradation in performance at an injection rate of 0.1 for the deflection
torus resulting in longer average latencies. This is because the effect of deflections
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patterns. (10×10 PEs, each point is an offered injection rate).

starts to hurt traffic sooner than the effect of buffering delays in the other NoCs. This
is expected as minimally buffered deflection routers [Fallin et al. 2012] have been
known to provide better performance than deflection routing when implementation
of lightweight buffering is not too expensive. Additionally, above an injection rate of
0.2 we observe all NoCs show similar average latency trends. This suggests the cost
of waiting in buffers is starting to close the gap with the penalty of deflections in the
NoC. Overall, deflections still stay more expensive for latency than buffered routing.
Thus, when considering only PE counts, absolute cycles and uniform random traffic
patterns, the 2D buffered mesh emerges as a clear winner on both fronts: bandwidth
and average latency.

Apart from uniform random pattern, we evaluated the NoCs across other commonly-
used synthetic routing patterns [Abad et al. 2012] as shown in Fig. 11. In this case, the
LOCALITY-based pattern runs somewhat well on the 2D mesh up to an offered injection
rate of ≈0.2. We even see peaking behavior in sustained throughput before congestion
effects degrade performance. The shape of this trend is a well-known characteristic of
shared interconnect systems such as Ethernet (CSMA/Aloha [Buchholz 1992]). How-
ever, for the deflection torus, the directionality of the routing damages the potential
of locality-aware traffic significantly to a sustained rate of ≈0.1. The TORNADO, BITREV
and TRANSPOSE patterns generally route poorly on all topologies with the torus-based
networks performing marginally worse than the mesh. The TORNADO pattern exhibits
noisy behavior for the Torus buffered NoC due to simulation effects and the align-
ment of injection times for the packets being unfavorable. At a 100% injection rate,
we observe an spike in the throughput of the TORNADO pattern on the Torus NoC due
to injections being perfectly aligned resulting in fewer conflicts in the network. The
TRANSPOSE pattern routes particularly well on the deflection torus due to limited con-
gestion in the NoC. These results further suggest that 2D buffered meshes are superior
to torus-based NoCs and deflection routing designs. This seems to counter our original
claims of the goodness of the deflection-routed unidirectional torus-based Hoplite NoC.
What is going on here?

5.2. Area Utilization Considerations
The previous NoC bandwidth and latency characterization may raise the question
whether the smaller, faster deflection routed NoCs are worthy of consideration at
all. When resource utilization costs are ignored, it is fair to suggest that the higher-
bandwidth 2D mesh-based NoCs will outperform their directional torus-based cousins
as shown in Fig. 12a. However, when mapped to a real FPGA, the specific implementa-
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Fig. 12: Evaluating NoC Throughput (Uniform random traffic, offered rate of 0.5,
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tion costs for mapping the PEs and switches will play a significant role in determining
the best NoC.

In Fig. 12b, we consider the real physical implementation costs (both area and clock
frequency) of the switches and the PEs. For a fixed NoC area budget allocation to all
NoCs, the deflection torus now delivers the highest throughput rather than the 2D
buffered mesh. This is because the larger bidirectional, buffered mesh consumes more
LUTs and thereby is able to accommodate a smaller sized NoC in the same physical
area when compared to the deflection torus. Apart from accommodating larger NoC
dimensions, the deflection torus router also runs at a faster clock frequency than the
2D buffered mesh router. Thus, the smaller, faster Hoplite switches compensate for the
larger switching capability of the 2D mesh router.

Another key consideration is the relative size of the PE when compared to the size
of the switch. We setup an experiment where PE sizes are variable and cover realistic
scenarios ranging from small lightweight integer soft processors (1–2K LUTs) to large
spatial floating-point dataflow engines (9–19K LUTs). At the smallest theoretical PE
size (0 LUTs) the NoC frequency and the PE frequency are considered to be identical.
As we increase the PE size, we heuristically degrade the circuit frequency by roughly a
nanosecond for every 500 LUT increase in area of PE. We expect that for larger PEs, we
can afford to pay the larger costs of the higher-bandwidth bidirectional mesh switches
for higher throughput. In this scenario the larger PE is likely to dictate clock frequency
and the resource cost of the switch may matter less against that of the PE itself.

Iso-Area case: When identical FPGA resources are available, a 9×9 deflection torus
design matches the cost of a 7×7 mesh design. Due to lower circuit frequency of the
mesh, this translates into a lower throughput (measured in packets/s) for the mesh. As
we increase PE size, the overall frequency will be dictated by the PE than the switch.
In this scenario, the mesh closes the performance gap with the deflection torus at PE
sizes that are 9.5K LUTs/PE (crossover marked iso-Area in Fig. 12c). For context, this
size roughly corresponds to the resource requirement of a double-precision multiply-
add block with associated control logic.

Iso-PE case: We can discount the physical cost of the NoC and assume that the 9×9
NoC of both torus and mesh topologies will require identical resources. This scenario is
roughly equivalent to hardening the NoC footprint in both cases and making the NoC
costs irrelevant to the comparison. If we now compare a deflection torus with a mesh,
we can conclude that the deflection torus is only superior to the mesh for small PE
sizes below 2K LUTs (crossover marked iso-PE in Fig. 12c). Again, for context, a 2K
LUT design is closer to a lightweight soft-processor capable of executing a basic ISA.
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random traffic, offered rate=0.1).

This suggests that we should prefer deflection torus networks for PEs <2K LUTs
(soft processors) when NoCs have been hardened and <9.5K LUTs (spatial floating-
point engines) when we must pay for the NoC in soft logic resources.

5.3. Impact on Fairness
A key consideration for latency-critical workloads, is the fairness of the routing algo-
rithm. Fairness directly affects the packet routing latencies, both in the average and
worse case scenarios. This metric is separate from the sustained throughputs shown
earlier and is important for real-time applications. For the NoCs considered in this
paper, we show the the latency histogram of the routed workload in Fig. 13a. Here, we
observe that the average packet latency of the mesh and torus is better than that of
the deflection torus. This data is for a RANDOM workload routed for a fixed duration of
32 K cycles (with an offered rate of 0.1 this translates to roughly 3.2 K packets per PE).
The buffered mesh is able to restrict the worst-case packet latency to ≈29K cycles for
an offered rate=0.1 with random traffic on a 10×10 system. In contrast, the torus and
deflection torus allow longer worst case routing delays of ≈30K cycles and ≈33K cy-
cles respectively under identical workload conditions. The unfairness for the deflection
torus is particularly pronounced and agrees with the average latency trends shown
earlier in Fig. 10b. This gap is narrower for smaller injection rate and sufficiently
higher injection rates due to underutilization and saturation of the NoC resources re-
spectively. We illustrate this effect in Fig. 13b. This suggests that routing delays due
to misrouted packets (O(

√
N) along a ring) are smaller than the overheads of holding

congested packets in FIFO buffers (waiting time). When factoring in physical oper-
ating frequency and higher offered rates, this gap will be even worse for the mesh.
However, when considering fully-featured NoC routers such as CMU Connect with
virtual-channel support, the worst case routing latencies will likely be lower than the
ones we report here for the buffered mesh.

We further analyze the effect of injection rates on worst case deflection costs and
its relation to the average case latencies in Figure 14 for a fixed-size RANDOM workload
of 1K packets per PE. Evaluation on a fixed-size workload reflects a real-world mul-
tiprocessor acceleration scenario such as sparse matrix vector multiplication (SpMV).
Parallel SpMV computations generate a fixed-sized communication trace tied to the
size and sparsity pattern of the matrix. As expected, the cost of worst-case latency
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Fig. 14: Understand Worst-Case Latency trends for various N×N configurations
(colors represent different N ). RANDOM workload of 1K packets.

increases linearly as we increase NoC size N (by as much as ≈20× when compar-
ing 2×2 NoC against the 10×10 NoC). Furthermore, aggressive injection rates have a
clear ≈5× effect on worst case latency at 10×10 NoC size. When comparing worst case
latencies to average case latencies in Figure 14b, we see a saturation at 6–8× at suffi-
ciently large injection rates. The sustained rates in most configurations saturate above
injection rates of 0.2 as observed earlier in Figure 10a. This explains why the latency
trends will be correspondingly affected. There is a smaller deviation from the average
latency at low injection rates that would be realistic in most scenarios. However, the
steep slopes at large NoC sizes suggest a quick descent into a large deviation from the
average-case behavior.

5.4. Qualitative Comparison of Hoplite NoCs to Buffered Virtual Channel 2D Torus Routers
To put our work in context with prior work, we qualitatively compare Hoplite to other
NoCs that use buffered virtual-channel based routers.

— Multi-flit packets. Routers that process packets spread across multiple flits or per-
form message segmentation and reassembly of flits, can transmit and receive packets
of arbitrary bit widths. Hoplite routers only ever send or receive an atomic message
(single flit packets) in one cycle.

— Virtual channels. Routers with virtual channels can transmit several classes of
traffic, and blocking on one message class does not impede delivery of other message
classes. In Hoplite, this can only be achieved with separate physical channels.

— In-order delivery. Some prior work routers may be configured to deliver messages
in order. Base Hoplite with simple deflecting dimension order router does not guar-
antee in-order delivery.

— Fairness. Some buffered routers, particularly with credit flow control, can achieve
relatively fair message ingress, transmission, and delivery. Hoplite’s use of simple
local flow control on message ingress means an upstream PE that tends to generate
a large number of packets can flood its X ring with traffic which may arbitrarily delay
ingress of packets from other PEs on the same ring. Similarly Y ring packets from a
busy upstream PE may delay delivery of packets sent by PEs on other X rings whose
packets cannot enter the necessary Y ring.

— High NoC utilization. Compared to Base Hoplite, buffered router NoCs achieve
higher sustained rates at high injection rates. As offered traffic (injection rate) in-
crease past a certain threshold, which is traffic and NoC size dependent, Hoplite
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NoCs see high deflection rates, leading to high message delivery latencies in the NoC
itself, and of course longer queueing at message ingress.

Many of these shortcomings can be mitigated, and since, for a given NoC size and
router link width, an FPGA-optimized Hoplite NoC uses several orders of magnitude
fewer LUTs, and has lower latency traversing each router, depending upon workload,
a Hoplite NoC solution may be far superior to prior FPGA soft NoCs.

In particular,

— Configurability. Since Hoplite is implemented in an FPGA, its routing function
is configurable and specializable to the given workload. One example of this is the
ability to reconfigure the routing function for certain regions of the NoC to throttle
PE injection rates based on some system-level fairness policy for packet injection.

— Simplicity of PE interface. Prior routers impose several hardships on the PE. If
the message width is greater than the flit/link width w, the PE must segment and
reassemble packets into/from flits. If multiple incoming flits arrive in an interleaved
fashion, the PE must provide sufficient RAM to buffer and reassemble those par-
tially received packets. For credit flow control routers, PEs may also need to maintain
per-VC credit counters for NoC input flits and perhaps even per-VC buffers for NoC
output flits.

— Multi-channel NoCs Since Hoplite routers are so frugal with LUTs, it becomes
possible to create a system with multiple NoCs. For example, if multiple PEs sent
DRAM read requests (64b), DRAM write requests (576b), and receive DRAM read
responses (576b), it is practical to instantiate a 64b NoC alongside a 576b NoC. This
has two benefits. It separates traffic into two classes, so that DRAM read responses
do not block on DRAM read requests; and (by virtue of the two NoCs) it doubles the
effective message delivery rate.

— Improving fairness Although this is the subject of future research, there are sev-
eral simple ways to improve the fairness of message ingress. When too many offered
packets are not accepted, or when X→Y turn deflection rates exceed a threshold, ei-
ther PEs or the routers themselves may throttle chatty ingress PEs to enable other
PEs to sent packets at some guaranteed throughput. A simple but not ideal way to
accomplish this is to limit the ingress rate at any PE to some threshold determined by
simulation so as not to push the NoC overall into unfair or highly deflecting operat-
ing regimes. A more sophisticated approach is to employ a different routing function
that enables X router ingress and Y router turns to be scheduled so that for a cer-
tain traffic cadence, clock cycles, or other functions of time, a certain traffic flow from
sources to destinations are fair, and deflection-free.

6. CONCLUSIONS
We show how to design Hoplite, an FPGA-friendly NoC using the deflection routing on
a unidirectional torus, in a manner that is 3.5× smaller (occupying ≈500 LUTs/switch
for HLS-generated design) than a conventional 2D Mesh NoC while running ≈2×
faster (≈300 MHz). Across a range of statistical workloads while consuming constant
area, the deflection routed torus can sustain a 2.5× throughput advantage over the
2D bidirectional, buffered mesh despite requiring half as many wires. We also note
that waiting time in buffers of 2D mesh actually delivers packets with a worst-case la-
tency that is marginally better than deflection routed torus due to multiple misroutes.
Overall, we expect simpler, cheaper, lighter-weight NoC fabrics to be more amenable
for supporting massively parallel FPGA overlays and other custom compute datap-
aths where switched communication is required. For example, our hand-crafted RTL
version of the switch with RLOC constraints for layout occupies 60 LUTs, 100 FFs and
runs at 2.9ns.
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