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Abstract—Customized unidirectional, bufferless, deflection-
routed torus networks can outperform classic, bidirectional,
buffered mesh networks for single-flit-oriented FPGA applica-
tions by as much as 1.5⇥ (best achievable throughputs for a
10⇥10 system) or 2.5⇥ (allocating same FPGA resources to
both NoCs) for uniform random traffic. We present Hoplite, an
efficient, lightweight, fast FPGA overlay NoC that is designed
to be small and compact by (1) eliminating input buffers, and
(2) reducing the cost of switch crossbar that have traditionally
limited speeds and imposed heavy resource costs in conventional
FPGA overlay NoCs. We implement bufferless deflection routing
cheaply, requiring the generation of only output multiplexer
controls and no backpressure handshakes. Additionally, we use
directional channels that help reduce crossbar cost by restricting
the number of inputs to the crossbar to three instead of
four. When compared to buffered mesh switches, FPGA-based
deflection routers are ⇡3.5⇥ smaller (HLS-generated switch)
and 2.5⇥ faster (clock period) for 32b payloads. In a separate
experiment, we hand-crafted a prototype RTL version of our
switch with RLOCS that requires only 60 LUTs and 100 FFs
per router and runs at 2.9 ns.

I. INTRODUCTION

It is an important and popular fact that the design and
engineering of 2D Mesh-based NoCs in modern SoCs and
multi-processing fabrics is critical for performance and energy
efficiency. For instance, we have traditionally assumed that 2D
bidirectional meshes are the most efficient network instead of
the third most efficient1. With the rising demand for acceler-
ator building blocks and the variety of IP cores available, the
use of an NoC-based communication fabric for assembling
large designs quickly has never been more important.

The programmable FPGA fabric makes is possible to
support overlay NoCs that are configured on top of these
programmable LUT and routing resources. They are adaptable,
customizable and tuneable, but have generally suffered from
high resource requirements when mapped to FPGAs. For
example, the 32b CMU CONNECT router [11] takes up
1.5K LUTs@9.6 ns while the 32b Penn Split-Merge router [6]
occupies 1.7K LUTs@4.5 ns. The key culprits in these designs
is the inability to cheaply implement small FPGA onchip
buffers and multi-bit crossbars while retaining high perfor-
mance. In the full-custom or ASIC domain, NoC designs do
not suffer the same drawbacks as custom SRAM buffers and
crossbar arrays can be provisioned directly on silicon without
any intermediate configuration layer. Unlike traditional ASIC
NoCs, support for VCs (virtual channels) and other exotic

1adapted from The Hitchhiker’s Guide to the Galaxy by Douglas Adams
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Fig. 1: Area-Throughput Tradeoffs for various switches in
a 10⇥10 NoC (Virtex-6 LX240T FPGA) under random
traffic and offered injection rate of 0.5 packets/cycle/PE.

Showing Hoplite hand-crafted RTL implementation results
in addition to switches generated from HLS tools.

NoC infrastructure is too expensive to overlay on top of the
FPGA. Under these circumstances, the performance limits
and exorbitant costs of FPGA overlay NoCs can become
a stumbling block in the wider adoption and integration of
NoCs. Some recent academic studies have investigated the
potential for hard NoCs [2] that are essentially ASIC-style
NoCs embedded within the FPGA fabric. However, it will
take years before we see them in a shipped product if the
business case is made in its favor. Furthermore, depending on
the wiring budget allocated to the hard NoC, they may still be
unable to perfectly satisfy the communication requirements of
spatial applications.

In this paper, we investigate the latency and throughput
characteristics of constructing overlay NoCs (which we call
Hoplite) using bufferless deflection-routed torus [10] on top
of a modern FPGA fabric. This design style simplifies the
engineering of FPGA overlay networks in two fundamental
ways: (1) The use of unidirectional torus instead of a bidirec-
tional network enables simpler switching and control logic in
the design. (2) The use of deflection routing elegantly handles



conflicts within the NoC without resorting to handshake-based
designs that add complexity to the router arbitration logic.
This reduction in complexity, simplifies the circuit design
sufficiently thereby enabling faster clock frequency of the NoC
fabric. Hoplite was first devised to efficiently interconnect
hundreds of soft processors in the Phalanx system [5], but is
broadly applicable to other NoC roles. In Fig. 1, we preview
our preliminary results for the various switches we devel-
oped for an 10⇥10 NoC. Despite the reduction in available
wires, the deflection-router based design is able to support
30% higher bandwidth for uniform random traffic while also
delivering a 3⇥ reduction in FPGA resource utilization at
100 PEs (PE is a Processing Element, like a soft processor,
or a communicating IP block).

We make the following key contributions in this paper:
• FPGA-focussed design and characterization of buffered

mesh, buffered torus and bufferless deflection router
architectures on the Xilinx ML605 platform.

• Quantification of the engineering tradeoffs in fairness
and latency distribution when using deflection routing for
various workloads.

• Performance evaluation and quantification of the NoC
under various statistical traffic patterns.

II. BACKGROUND

A. Context
Modern computing fabrics including multi-core CPUs,

SIMD GPUs, and heterogeneous embedded SoCs have all
adopted some form of time-shared networking resource for ex-
changing data and control. These networks are used to support
cache coherency traffic or explicit, user-controlled DMA data
transfers between IP blocks. These scenarios cover application
communication requirements that are dynamic and unknown
until runtime. Unlike these computing systems, FPGAs have
long supported statically configured routing resources that are
programmed and managed offline during compile time. While
this structure is ideal for circuit-style dataflow computations,
there is still a demand for supporting traffic generated by
computing overlays (e.g. Vector, VLIW, Dataflow) or between
IP cores using an AXI-compatible bus protocol. In particular,
we are interested in supporting massively-parallel, customized
soft-processor arrays programmed on top of the FPGA fabric.
We consider traffic patterns [1] where we generate a large
number of packets that needs to be independently routed to
dynamically determined destination information. To support
such dynamic workloads, we need packet-switched overlay
designs where each packet (or flit) is routed based on address
information that is bundled with the data (payload).

B. Related Work
While we still use them today, bus-based shared networks

were common in the resource starved silicon-poor era of
the late 1990s-2000s. As wiring delays overwhelmed gate
delays and the effects of Rent’s rule manifested in system-level
communication requirements, it was no longer adequate to rely
purely on busses alone. Shared, switched networks that route

TABLE I: Comparing FPGA-based NoC routers
(32b payloads, Xilinx Virtex-6 LX240T).

Router LUTs FFs Cycle (ns)

CONNECT 2VCs 1562 635 9.6
Split-Merge DOR 1785 541 4.5

Hoplite NoC written in Vivado HLS (This paper)
Mesh 2035 1669 6.8
Torus 1046 949 4.8
Deflection Torus 576 570 3.1

Hoplite Prototype Hand-Crafted RTL (This paper)
Deflection Torus 60 100 2.9

packets instead of wires [4] became increasingly important.
ASIC-based NoC designs have enjoyed the ability to introduce
new performance-enhancing features such as virtual channels,
and exotic flow-control strategies as their silicon implemen-
tation costs are fairly modest. Few FPGA-based NoC router
designs such as the CMU CONNECT [11] have attempted
to replicate this model on top of FPGAs and have reported
slow, and large designs. However, the cost of supporting
virtual channels on FPGAs in the style of CMU CONNECT
is high as each VC buffer and associated control adds to
circuit complexity. The Penn Split-Merge [6], [7] architectures
throws out the ASIC-inspired design methodology in favor of a
simpler, VC-free, handshake-based, pipelining-friendly FPGA
switches. However, both these designs still spend 30–40% of
their resources on crossbar switching and 20–40% on buffering
requirements while operating between 90–200 MHz. The Split-
Merge router can be run faster up to 310 MHz at the cost
of additional pipelining per hop which directly affects worst-
case latency. For statically known workloads, we may instead
use time-multiplexed NoCs [7] that store the pre-computed
routing decisions in lookup tables at each router output port.
This has been shown to reduce resource requirements by 2⇥
or more while also operating faster due to simpler, cleaner
multiplexing logic. However, this design style does require a
priori static knowledge of the communication workload and
an offline scheduling step that may not always be feasible.
Low-cost routers [8] and bufferless deflection routers were
proposed in [10] as a way to address the rising buffer costs
(area, delay, power) in ASIC-based NoCs for multi-processing
workloads with multi-flit packets. This was refuted in [9]
where energy benefits were found to be minimal and latency
and bandwidth benefits were superior for the buffered designs.
We investigate the potential for custom deflection routers
for specific application scenarios for flit-level routing in the
context of FPGAs where buffers and crossbars are expensive
and slow. We summarize key resource utilization results for
our proposed design in Table I and contrast it against existing
FPGA overlay NoC routers.

C. Network-on-Chip Design

While we can organize the switches in various topologies,
we consider designing overlay NoCs on the FPGA in a 2D
layout using mesh and torus topologies as shown in Fig. 2.
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Fig. 3: Switch Organizations evaluated in this study. Bidirectional Buffered Mesh needs FIFO buffers, and wires in each
dimension, Directional Buffered Torus doubles bisection bandwidth but still requires buffering, while Directional torus

eliminates buffers as well.

(a) 2D Bidirectional Mesh (b) 2D Directional Torus

Fig. 2: Topology of NoCs considered in this study – A
Bidirectional Mesh and a Directional Torus.

Data is routed over the network in a packet-switched style.
While generally, each packet can composed of multiple flits,
we consider finer-grained load-store style traffic generated in
a multi-processing fabric. In this scenario, each packet is a
single flit and carries two fields (1) address of destination, and
(2) data payload. To avoid deadlock during routing, we can
implement various routing algorithms in the switch such as
Dimension-Ordered Routing (DOR), West-Side First (WSF).
For simplicity, we support DOR routing as it is cheap and
straightforward to implement on the FPGA logic similar to
the Penn and CMU routers.

III. DEFLECTION ROUTED TORUS NOC

In this paper, we explore the architecture tradeoffs in the
use and optimization of FPGA NoCs with network traffic
generated from statistical sources. Specifically, we investigate
the impact of bufferless routing on FPGA NoC implementation
cost and on performance in terms of latency and bandwidth.

In Fig. 3, we show the high-level internal organization of
three styles of switches that could be used to build an NoC for
a 2D Mesh of processing elements (PEs). A classic buffered
2D Mesh switch supports DOR routing and packet traversals in
all four directions of the mesh (and the PE). The mesh switch
is organized into three principal building blocks that contribute
to cost of the switch – (1) crossbar, (2) route arbitration,
(3) buffering and multiplexing of IOs. The implementation
complexity of the crossbar is O(N2) where N is number
of IOs. For the 2D bidirectional mesh, N=4 (five inputs and
four outputs, one connection for the PE, four connections for
each of the four directions in the mesh, loopback self-edge
not supported thereby depopulating the crossbar by 1) and is
typically implemented using one Virtex-6 6:1 LUTs (MUXes)
per bit per output port and any associated pipelining registers
and FIFOs for performance. The route arbiter implements
DOR routing algorithm and handles conflicts emerging from
the packets being routed. The rest of the resource requirements
are due to the input FIFOs and bypass MUXing and registers
along with output registers. These FIFOs are implemented
using SRL blocks and registers with bypass paths to reduce
queueing delay within the switch. This alone is sufficiently
complex to preclude implement cheaply on the FPGA, and
we eschew the idea of Virtual Channels and complex credit-
based flow control to keep hardware simple. We tabulate these
requirements for a 32b payload, 16b address switch in the
Table II.

The use of a directional network such as a torus is one
way to lower implementation cost specifically in the crossbar
block. A unidirectional buffered torus switch only accepts
packets from two dimensions (and the PE) thereby reducing
the crossbar complexity as we now have N=3 (one connection
for the PE, two connections for vertical and horizontal lanes).
We tabulate these reductions in Table II.

Buffering cost can be eliminated by adopting a deflection



routing technique [10] that mis-routes packets in presence of a
conflict. In buffered switches, FIFOs are used to hold incoming
packets when the desired outgoing port is not available i.e.
another packet is using the port in that cycle. In contrast, in
deflection-routed networks, we intentionally mis-route packets
(knowing that deadlock is not possible in bufferless networks)
along available ports if the desired port is not available to
simplify circuit implementation cost. As we have identical
number of incoming and outgoing links in the switch, we
can always guarantee an outgoing slot for incoming packets.
For the outgoing PE port, we mis-route the packet back into
the PE if the switch is occupied thereby creating implicit
backpressure. We can observe the reductions in resource costs
in Table II. The 2D buffered mesh requires roughly 3.5⇥
more LUTs and 3⇥ more FFs than the deflection routed
torus. The buffered torus switch is only marginally larger
than the deflection routed torus requiring 1.8⇥ more LUTs
and 1.6⇥ more FFs. When considering switch throughputs,
the deflection routed torus runs roughly 2.1⇥ faster than the
buffered mesh switch and 1.5⇥ faster than the buffered torus.
Thus, the simpler and leaner switch design of the deflection
routed torus requires fewer resources and runs faster than
the alternative buffered switches. The route arbitration for
the deflection torus is indeed marginally slower (by 0.1–
0.2 ns) due to the more complex routing logic for handling
all deflection cases, but overall clock frequency is still faster.

When comparing the efficiency of a buffered network to
that of a bufferless network, we must consider the relative
impact of congestion. In a buffered network, this manifests
as waiting time in the buffers while in a deflection torus,
congested packets are mis-routed. While implementation of
the mis-routing policy is substantially simpler on the FPGA
(see Table II), packets may now take multiple trips in the NoC
due to mis-routing at conflicted switches before reaching their
destination. While this may seem unfair, as packets may re-
traverse the NoC again covering longer distances, the penalty
of waiting time as well as leaner, faster deflection-routed
FPGA switches will make this an interesting architecture
comparison. Thus in the final evaluation, we will observe a
composite effect of waiting time in buffered networks with
the slower NoC design competing with the faster, simpler
deflection router with its associated mis-routing overheads.

TABLE II: Relative Resource Utilization (LUTs and FFs)
of various Switch Blocks in Vivado HLS.

Crossbar (%) Arbiter (%) Total (%)

Mesh (LUTs) 860 42 280 14 2035 100
Torus (LUTs) 286 27 64 6 1046 100
Defl. Torus (LUTs) 215 37 130 22 576 100

Mesh (FFs) 389 23 97 6 1669 100
Torus (FFs) 223 23 31 3 949 100
Defl. Torus (FFs) 205 35 79 13 579 100

IV. METHODOLOGY

1) Switch RTL for simulation: We generate RTL for our
various switch configurations using synthesizable C++ de-
scriptions of the switch with Vivado High-Level Synthesis.
We modularize the switch unit into (1) crossbar, (2) router
arbiter, and (3) input buffering components when generating
the switch units. We synthesize the designs using Vivado HLS
(C to RTL) and Vivado 2013.4 (RTL to bitstream). We run
cycle-accurate simulations of the NoC in C++ and develop
cycle-accurate models of the traffic generators in the PEs (See
Section IV-3).

2) Switch RTL for synthesis: Despite HLS optimizations, a
bottom-up RTL description of the switch still delivers signifi-
cantly better results. In Fig. 5, we show a prototype proof-
of-concept 10⇥10 RTL deflection torus NoC implemented
on a Virtex-6 LX240T (ML605). This functionally-verified
Verilog design consumes 60 6-LUTs and 100 FFs per router,
for a total of 6,150 6-LUTs and 14,800 FFs (including test
logic) while operating in excess of 300 MHz when densely
floorplanned. This is less than 4% logic utilization of the
device. The RTL switch provides several improvements over
the HLS version:
• It employs a 3-input 2-output switch instead of the 3-output
switch of the HLS version. An output packet for the client
PE appears on (and shares) the Y output. Under load this
may cause additional packet deflections when valid input
packets XI and YI vie to exit on the shared Y output link.

• The partial crossbar switch achieves two link output bits
per 6-LUT, using fracturable LUTs.

• The datapath is technology mapped and floorplanned using
LUT_MAP and RLOC constraints.

• For a 10⇥10 NoC, 4b X and 4b Y addressing bits suffice
and reduce DOR arbiter complexity. The packet payload
is intentionally widened from 32b to 40b to keep (com-
parable) 48b wide packets and links and preserve wiring
requirements in the mapping.

YI

I
Y

XXI

YI
Y

XXI

I

Fig. 4: Xilinx partial crossbar switch using dual 2-1
muxes.



The RTL is parameterized to target Altera or Xilinx FPGAs.
Modern Altera FPGAs [3], by virtue of their fracturable 8-
input ALM (Adaptive Logic Module), can implement a one-
bit wide slice of a 3-2 crossbar (dual 3-1 muxes) per ALM.
Modern Xilinx FPGAs [12] provide (less flexible) fracturable
6-LUTs which may be used as a pair of 5-input LUTs, so long
as the two LUTs take the same five input signals. Therefore
an 8-bit-wide 2-1 multiplexer (e.g. with a common select line)
can be implemented in a four 6-LUT “slice”. Two such 2-1
muxes can be cascaded to build a partial crossbar from XI,
YI, I inputs to X, Y outputs (Figure 4). Thus eight 6-LUTs
in total can switch 8 X-outputs and 8 Y-outputs. This partial
crossbar datapath does not implement every transfer function
of the three inputs, but it provides a useful subset: YI!Y and
XI!X, or XI!Y, or YI!Y and I!X, or I!Y.

(* KEEP_HIERARCHY="true" *)
module m2x48(input sel,

input [47:0] a,
input [47:0] b,
output [47:0] o);

(* RLOC="X0Y0" *)
m2x8 m0(.sel(sel),

.a(a[7:0]),

.b(b[7:0]),

.o(o[7:0]));
...
(* RLOC="X0Y5" *)
m2x8 m5(.sel(sel),

.a(a[47:40]),

.b(b[47:40]),

.o(o[47:40]));
endmodule

(* KEEP_HIERARCHY="true" *)
module m2x8(input sel,

input [7:0] a,
input [7:0] b,
output [7:0] o);

genvar i;
generate for (i=0; i<8; i=i+1) begin : ms

(* RLOC="X0Y0" *)
m2 m(.sel(sel),

.a(a[i]),

.b(b[i]),

.o(o[i]));
end endgenerate

endmodule

(* LUT_MAP="yes" *)
module m2(input sel,

input a,
input b,
output o);

assign o = (˜sel&a) | (sel & b);
endmodule

Listing 1: 48-bit 2-1 mux RPM – a column of 6 slices

Xilinx hierarchical RPM (relationally placed macro) imple-
mentation is not well known. Listing 1 presents the Verilog
source of a 48-bit-wide floorplanned 2-1 mux RPM used in

Fig. 5: Folded torus layout of 10⇥10 prototype Hoplite
NoC on a small portion (or corner) of LX240T (4%

LUTs-FFs, 2.9ns clock). Here, each color represents one
router in the 2D folded torus.

Figure 5. The LUT_MAP constraint on m2 forces it to be
mapped to a LUT; the RLOC="X0Y0" constraint causes eight
m2s to be implemented in the same slice of four 6-LUTs; and
RLOC constraints on the six instances m0..m5 of m2x8 cause
them to be placed one above another in a column of six slices.

The design composes two RLOC’d m2x48s into a Hoplite
router switch RPM, and composes 10⇥10 Hoplite routers into
a 2D torus NOC of placed router RPMs. In Figure 5, the
overall floorplan of the routers has been interleaved, or folded,
to keep all link wires relatively short. Otherwise there could
be many long or die-crossing wires, for example in X links
from (9,y) to (0,y) or in Y links from (x,9) to (x,0).

Since we do not have equivalent hand-optimized RTL for
buffered switches, we use the HLS results for a fairer relative
comparison (making the deflection router look much worse
than is possible in RTL).

3) Workloads: We evaluate our NoC under various statis-
tically generated workloads commonly used within the NoC
community [1]. We develop processors that generate traffic
under the following models: (1) uniform random, (2) uniform
random but locality-aware traffic (within an rlimit), (3) bit-
reverse, (4) tornado, and (5) transpose. These workloads stress
the network under both bandwidth and worst/average latency
scenarios. We model injection rate as the rate of at which
packets are available to enter the network (measured as packets
per cycle per PE). We generate NoC performance statistics by
running our statistical workloads for 32K cycles and consider
offered rates (or offered throughput) between 0.025 (2.5% of
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Fig. 6: Sustained vs. Offered Throughput in the NoCs
(10⇥10 PEs, each point is an offered injection rate).

time spent attempting sending packets) and 1.0 (100%). We
measure sustained rates (or sustained throughput) which are
the rates actually possible due to blocking and congestion
within the NoC. Consequently, these will be less than the
offered rates. We also measure average latency along with
worst-case latency of the workloads by tracking the latency
of each packet while including source queueing delay in our
measurement (i.e. time spent at the source PE between attempt
to enter NoC and actual entry).

V. RESULTS

We now stress-test our NoC topologies and switches under
various statistical traffic patterns and evaluate throughput,
average/worst-case latency scenarios and the impact of FPGA
implementation area (HLS switches) on performance.

A. Throughput Tests
Under randomly generated communication workloads (uni-

form random), the NoC is able to sustain throughput only up
to a certain input offered rate (⇡0.15) as shown in Fig. 6. This
expected behavior due to congestion effects in the NoC at high
traffic loads. The deflection torus saturates at a peak sustained
rate of around 0.1, the buffered torus at 0.12, and the buffered
mesh at around 0.15 for a 10⇥10 system. This gap is the
result of the deflection torus and the buffered torus having half
the bisection bandwidth of the mesh. Furthermore, buffering
allows the torus to sustain marginally superior bandwidth
compared to the deflection torus due the cost of mis-routing.

In Fig. 7, we measure the average latency of each packet
traversal on our NoCs as a function of sustained throughput
at various PE counts. The deflection torus has generally
higher average routing times per packet (2⇥ longer delay over
mesh) are again in agreement with the bandwidth results in
Fig. 6. Additionally, we observer an earlier degradation in
performance at an injection rate of 0.1 for the deflection torus
resulting in longer average latencies. Thus, when considering
only PE counts, absolute cycles and uniform random traffic
patterns, the 2D buffered mesh emerges as a clear winner on
both fronts: bandwidth and average latency.

● ●

●

●
●

10

1 k

100 k

0.025 0.05 0.1 0.2 0.3
Offered Throughput
 (Packets/Cycle/PE)

Av
er

ag
e 

La
te

nc
y

 (C
yc

le
s)

● Deflection Torus
Mesh
Torus

Fig. 7: Average Latency vs. Sustained Throughput Plots
(10⇥10 PEs, each point is an offered injection rate).

Apart from uniform random pattern, we evaluated the NoCs
across other commonly-used synthetic routing patterns [1] as
shown in Fig. 8. In this case, the LOCALITY-based pattern
runs somewhat well on the 2D mesh up to an offered injection
rate of ⇡0.2. However, for the deflection torus, the direction-
ality of the routing damages the potential of locality-aware
traffic significantly to a sustained rate of ⇡0.1. The TORNADO,
BITREV and TRANSPOSE patterns generally route poorly
on all topologies with the torus-based networks performing
marginally worse than the mesh.

B. Area Utilization Considerations
The previous NoC bandwidth and latency characterization

may raise the question whether the smaller, faster deflection
routed NoCs are worthy of consideration. When PE costs
and switch costs are ignored, it is fair to suggest that the
higher-bandwidth 2D mesh-based NoCs will outperform their
directional torus-based cousins as shown in Fig. 9a. However,
when mapped to a real FPGA, the specific implementation
costs will plan a significant role. In Fig. 9b, we consider
the real physical implementation costs (both area and clock
frequency) of the switches and the PEs. We use the placement-
and-routed resource results from our HLS-based switch to
retain consistency and continuity across designs. For a fixed
NoC area budget, the deflection torus delivers the highest
throughput in our comparisons. This is because the larger
bidirectional, buffered mesh consumes more LUTs and thereby
is able to accommodate a smaller sized NoC in the same
physical area when compared to the deflection torus. Addi-
tionally the faster clock frequency of the deflection torus fur-
ther improves performance. Thus, the smaller, faster switches
compensating for the larger switching capacity of the 2D
mesh router. Another key consideration is the relative size
of the PE when compared to the size of the switch. As
we increase the size of PEs, we (heuristically) consider a
drop in the circuit frequency of roughly a nanosecond for
every 500 LUT increase in area of PE. Our PE sizes cover
realistic scenarios ranging from small lightweight integer soft
processors to large spatial floating-point dataflow engines. We



●
●

●

●
●

● ● ● ● ● ● ● ●

0.0

0.1

0.2

0.3

0.00 0.25 0.50 0.75 1.00
Offered Injection Rate

Su
st

ai
ne

d 
Th

ro
ug

hp
ut Mesh

0.0

0.1

0.2

0.3

0.00 0.25 0.50 0.75 1.00
Offered Injection Rate

Su
st

ai
ne

d 
Th

ro
ug

hp
ut Torus

0.0

0.1

0.2

0.3

0.00 0.25 0.50 0.75 1.00
Offered Injection Rate

Su
st

ai
ne

d 
Th

ro
ug

hp
ut Deflection Torus

● PATTERN_BITREV
PATTERN_LOCAL

PATTERN_RANDOM
PATTERN_TORNADO

PATTERN_TRANSPOSE

Fig. 8: Sustained vs. Offered Throughput (packets/cycle/PE) across various traffic patterns
(10⇥10 PEs, each point is an offered injection rate).

●

●

●
●

●
●

●
●

●

0

5

10

0 20 40 60 80
PEs

Th
ro

ug
hp

ut
 (P

ac
ke

ts
/c

yc
le

)

● Deflection Torus
Mesh
Torus

(a) Throughput vs. PEs

●

●

●

●

●
●
●
●
●

2.5x 1.5x

0

1

2

3

0 50000 100000 150000
Resource Utilization (LUTs)

Th
ro

ug
hp

ut
 (1

06 Pa
ck

et
s/

s)

(b) Throughput vs. Area (Only NoC)
is

oP
E

is
oA

re
a

0

1

2

3

0 2500 5000 7500 10000
LUTs/PE

Th
ro

ug
hp

ut
 (1

06 Pa
ck

et
s/

s)

Deflection Torus 9x9
Mesh 7x7
Mesh 9x9

(c) Throughput vs. Area/PE

Fig. 9: Evaluating NoC Throughput (Uniform random traffic, offered rate of 0.5, each point represents a PE config.).

expect that for larger PEs, we can afford to pay the larger
costs of the higher-bandwidth bidirectional mesh switches for
higher throughput (packets/cycle). In this scenario the larger
PE is likely to dictate clock frequency and the resource cost
of the switch may matter less against that of the PE itself.
Surprisingly, even in this scenario, the mesh only starts to
close the gap with the deflection torus at PE sizes that are
9.5K LUTs/PE. For context, this size roughly corresponds to
the resource requirement of a double-precision multiple-add
block with associated control logic. A 9⇥9 deflection torus
design matches the performance (throughput) of a 7⇥7 mesh
design using equal FPGA resources (marked iso-Area in
Fig. 9c). If we discount the physical cost of the NoC which is
somewhat analogous to embedding a hard NoC, and compare
a 9x9 deflection torus and mesh designs, we can conclude that
the deflection torus is only superior to the mesh for small PE
sizes below 2K LUTs (marked iso-PE in Fig. 9c). Again,
for context, a 2K LUT design is closer to a lightweight soft-
processor capable of executing a basic ISA. This suggests that
we should prefer deflection torus networks for PEs <2K LUTs
for a hard NoC design (soft processors) and <9.5K LUTs for
an overlay NoC (spatial floating-point engines).
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Fig. 10: Density Histogram of Packet Latency for a 10⇥10
NoC routing uniform random traffic, offered rate=0.1).

C. Impact on Fairness
A key consideration for latency-critical workloads, is the

fairness of the routing algorithm. As we observe in the latency
histogram shown in Fig. 10, the average latency of the mesh
and torus is better than the deflection torus. Furthermore, the
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traffic under various offered injection rates.

mesh is able to restrict the worst-case packet latency to ⇡29K
cycles for an offered rate=0.1 with random traffic on a 10⇥10
system. In contrast, the torus and deflection torus allow much
longer worst case routing delays of ⇡30K cycles and ⇡33K
cycles respectively under identical workload conditions. The
unfairness for the deflection torus at an injection rate of 0.1 is
particularly pronounced and agrees with the average latency
trends shown earlier in Fig. 7. This gap is not this large for
smaller injection rate and sufficiently higher injection rates due
to underutilization and overutilization of the NoC resources
respectively. We illustrate this effect in Fig. 11.

D. Summary

We can summarize key findings of our experiments here:
• Identical PE counts and Identical Clock Period: If
physical costs and implementation frequency of the PE and
the switch are ignored, the 2D buffered bidirectional mesh
network with 2⇥ bisection bandwidth is the clear winner.
This finding is confirmed when measuring sustained rates
(Fig. 6) as well as average latency (Fig. 7).
• Identical Resources and Observed Clock Period: When
physical mapping costs and circuit frequency are consid-
ered, the deflection torus network is as much as 3⇥ faster
at identical area usage of 50K LUTs (Fig. 9).
• Statistical Patterns: When we stress-test the NoCs
with hard-to-route patterns (TORNADO, BITREV, and
TRANSPOSE), the gap between the NoCs is not particularly
significant. For LOCAL traffic patterns, the Mesh deliver
better performance due to higher switching capacity at
identical PE counts but still gets beat by the deflection torus
when considering area (Fig. 8).
• Fairness: The effect of waiting time in buffers is only
marginally better than the effect of mis-routing on deflection
routed network (Fig. 10).

VI. CONCLUSIONS

We show how to design Hoplite, an FPGA-friendly NoC
using the deflection routing on a unidirectional torus, in a
manner that is 3.5⇥ smaller (occupying ⇡500 LUTs/switch
for HLS-generated design) than a conventional 2D Mesh NoC
while running ⇡2⇥ faster (⇡300 MHz). Across a range of
statistical workloads while consuming constant area, the de-
flection routed torus can sustain a 2.5⇥ throughput advantage
over the 2D bidirectional, buffered mesh despite requiring half
as many wires. We also note that waiting time in buffers of 2D
mesh actually delivers packets with a worst-case latency that is
marginally better than deflection routed torus due to multiple
mis-routes. Overall, we expect simpler, cheaper, lighter-weight
NoC fabrics to be more amenable for supporting massively
parallel FPGA overlays and other custom compute datapaths
where switched communication is required. For example, our
hand-crafted RTL version of the switch with RLOC constraints
for layout occupies 60 LUTs, 100 FFs and runs at 2.9ns.
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