GRVI Phalanx Update

An update on the work-in-progress GRVI Phalanx.


An extended abstract and brief talk on GRVI Phalanx was presented at the 2nd International Workshop on Overlay Architectures (OLAF-2) at FPGA 2016.

GRVI Phalanx was discussed in the short talk Software-First, Software Mostly: Fast Starting with Parallel Programming for Processor Array Overlays at the Arduino-like Fast-Start for FPGAs pre-conference workshop at FCCM 2016. [Slides]

The first refereed paper on GRVI Phalanx was presented yesterday at the 24th IEEE International Symposium on Field-Programmable Custom Computing Machines (FCCM 2016): GRVI Phalanx: A Massively Parallel RISC-V FPGA Accelerator Accelerator and received the FCCM 2016 Best Short Paper Award. [PDF]

Hardware Changes: Version 0.2

Here are some of the changes made to the GRVI Phalanx design since it was first described at the 3rd RISC-V Workshop. This is now version 0.2.


  • LB/LBU/LH/LHU/SB/SH: Load/store byte and halfword alignment functionality is now configured OFF in the GRVI PEs. The LdMux and StMux units have been factored out of GRVI and into the GRVI cluster, each set of muxes shared by a pair of cores.
  • MUL/MULH/MULHU/MULHSU: The multiply instructions from the RISC-V “M” extension are now enabled by default and are implemented in the GRVI cluster. Each pair of processors shares one DSP-based multiplier. This consumes 200 DSP48s in the 400 PE GRVI Phalanx for Kintex UltraScale 040, leaving 1720 DSP48s for use by accelerators.
  • SL*/SR*: By default, fast left and right shift instructions are also implemented in these DSP-based multipliers.
  • LR/SC: These atomic instructions from the RISC-V “A” extension are now enabled by default. Part of the implementation is in the GRVI core and part in the GRVI cluster memory arbiters. The implementation considerations were discussed on the RISC-V mailing lists here.


  • A Phalanx system may be configured to replace the cluster at (NX-1,NY-1) with a character mode VGA cluster with a 32 KB text frame buffer.
  • Hoplite multicast message routing is now enabled by default. An agent can sent a message to every cluster on a given row, given column, or to every cluster on the NOC. If desired, all IRAMs in all clusters in a Phalanx may be updated with a single burst of 1024 XY-multicast messages.